Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 991597, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238549

RESUMO

Intestinal aging seriously affects the absorption of nutrients of the aged people. Ginsenoside Rb1 (GRb1) which has multiple functions on treating gastrointestinal disorders is one of the important ingredients from Ginseng, the famous herb in tradition Chinese medicine. However, it is still unclear if GRb1 could improve intestinal aging. To investigate the function and mechanism of GRb1 on improving intestinal aging, GRb1 was administrated to 104-week-old C57BL/6 mice for 6 weeks. The jejunum, colon and feces were collected for morphology, histology, gene expression and gut microbiota tests using H&E staining, X-gal staining, qPCR, Western blot, immunofluorescence staining, and 16S rDNA sequencing technologies. The numbers of cells reduced and the accumulation of senescent cells increased in the intestinal crypts of old mice, and administration of GRb1 could reverse them. The protein levels of CLDN 2, 3, 7, and 15 were all decreased in the jejunum of old mice, and administration of GRb1 could significantly increase them. The expression levels of Tert, Lgr5, mKi67, and c-Myc were all significantly reduced in the small intestines of old mice, and GRb1 significantly increased them at transcriptional or posttranscriptional levels. The protein levels of SIRT1, SIRT3, and SIRT6 were all reduced in the jejunum of old mice, and GRb1 could increase the protein levels of them. The 16S rDNA sequencing results demonstrated the dysbiosis of the gut microbiota of old mice, and GRb1 changed the composition and functions of the gut microbiota in the old mice. In conclusion, GRb1 could improve the intestinal aging via regulating the expression of Sirtuins family and modulating the gut microbiota in the aged mice.

2.
Toxicology ; 477: 153278, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35926757

RESUMO

Loperamide is a non-prescription medicine normally used for the treatment of diarrhea. The abuse and misuse of loperamide have been demonstrated to have toxic effects on heart. It is still unclear whether the abuse of loperamide can cause hepatic toxicity. The C57BL/6 mice fed with high fat diet (HFD) or normal food diet (NFD) were administrated with loperamide (5 mg/kg/day) intragastrically once a day for two weeks, after that, the feces, blood, hepatic tissues and intestines were harvested for biochemical and histological detection, and the expression of genes related with lipid metabolism was further checked by qRT-PCR (quantitative real-time polymerase chain reaction) and Western blot. The administration of loperamide caused the constipation in mice fed with NFD or HFD. The content of bile acids was significantly reduced in the feces of mice treated with loperamide, but the content of bile acids was significantly increased in the liver of these mice. The results of H&E staining showed that loperamide administration caused the damage of hepatic tissues, especially for mice fed with HFD. The expression of genes related with the biosynthesis of cholesterol and bile acids, including Hmgcr, Lss, Sqle, Fdps, Idi1, Mvk, Cyp7a1 and Ch25h, was all upregulated in the liver of mice treated with loperamide. Conversely, the expression of Abcg5, Abcb11 and Abcc2, which encode genes for transporting cholesterols and bile acids from hepatocytes to bile respectively, was downregulated in the liver of mice treated with loperamide. At the same time, the expression of Fabp6 and Slc51a, which transport bile acids from intestinal lumen into the blood, was all upregulated in the ileum of mice treated with loperamide. The expression of SHP, which inhibits the transcription of Cyp7a1 in hepatocytes, was significantly downregulated in the hepatic tissues of mice treated with loperamide. These results demonstrated that administration of loperamide caused excessive accumulation of bile acids in the liver of mice via upregulating genes for biosynthesis of cholesterol and bile acid and downregulating genes for discharging cholesterol and bile acids in hepatocytes of mice, moreover, the downregulation of SHP in hepatic tissues might be one of the mechanisms of it, especially for mice fed with HFD.


Assuntos
Ácidos e Sais Biliares , Loperamida , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Dieta Hiperlipídica , Fígado , Loperamida/metabolismo , Loperamida/toxicidade , Camundongos , Camundongos Endogâmicos C57BL
3.
Front Immunol ; 13: 843378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493520

RESUMO

EpCAM deficiency causes congenital tufting enteropathy (CTE) which is considered as one kinds of very early onset inflammatory bowel disease (IBD). However, functions of EpCAM on regulating the immunity of intestines are still unclear. To study the mechanism of EpCAM on maintaining the intestinal immune homeostasis, the intestines of WT and EpCAM-/- mice at E18.5, P0 and P3 stages were collected for morphological, histological and gene expression tests. Serious inflammation was detected in the small intestines of P3 EpCAM-/- mice. Compared to WT mice, genes related to inflammatory factors and immunity cells, including TNFα, IL-1ß, IL-6, IL-8rb, MIP2, MCP1, Ly6d and Ly6g, were all significantly upregulated and the expression of intestinal abundance matrix metalloproteinases (MMPs) was also significantly increased in the intestines of EpCAM-/- mice at E18.5, P0 and P3 stages. Signals of p38, ERK1/2 and JNK were hyper-activated in the intestines of EpCAM-/- mice. The expression of pIgR was significantly decreased and the expression and activation of transcriptional factors which promote the expression of pIgR were also reduced in the intestines of EpCAM-/- mice compared to WT controls. In conclusion, EpCAM could maintain the immune homeostasis of intestines via keeping the expression of pIgR in the intestinal epithelium.


Assuntos
Diarreia Infantil , Mucosa Intestinal , Animais , Molécula de Adesão da Célula Epitelial/genética , Homeostase , Humanos , Lactente , Mucosa Intestinal/metabolismo , Intestinos/patologia , Camundongos
4.
Theriogenology ; 179: 45-59, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34826707

RESUMO

The association between cancer and female reproduction remains largely unknown. Here we investigated the quality of oocytes and the developmental potential of zygotes using H22 tumor-bearing mice model. The results showed that the number of oocytes was decreased in tumor-bearing mice compared with the control mice, and accompanied scattered chromosomes was observed. Further study revealed an abnormal epigenetic reprogramming occurred in the zygotes from the H22 tumor-bearing mice, as exemplified by the aberrant 5hmC/5mC modifications in the pronuclei. Finally, single-cell RNA sequencing was performed on the oocytes collected from the H22 tumor-bearing mice. Our data showed that 45 of the 202 differentially expressed genes in tumor-bearing group were closely associated with oocyte quality. Protein interaction analysis indicated that the potential interaction among these 45 genes. Collectively, our study uncovered that the quality of oocytes and early embryonic development were affected by H22 tumor bearing via the altered expression patterns of genes related with reproduction, providing new insights into the reproductive capability of female cancer patients.


Assuntos
Neoplasias , Doenças dos Roedores , Animais , Desenvolvimento Embrionário/genética , Feminino , Camundongos , Neoplasias/veterinária , Oócitos , Gravidez , Análise de Sequência de RNA/veterinária , Zigoto
5.
Toxicology ; 450: 152678, 2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33440193

RESUMO

Exposure of humans to second-hand smoking (SHS) increases glucose and lipid metabolic disorders. The link of hepatic metabolic dysfunction to environmental cigarette smoking has been noticed, but the related mechanism is still unclear. C57BL/6 mice with normal food diet (NFD) or high fat diet (HFD) were exposed to 15 min cigarette smoking twice a day in a 0.038 m3 box for 4 weeks, and the concentration of nicotine in the air of the box was 21.05 mg/m3 during the smoke exposure. Liver tissues and serum were collected for gene expression and biochemistry test. The fecal microbiota was also checked through 16S rDNA sequences. Cigarette smoking exposure increased the accumulation of total cholesterol (TC) in liver, and the expression of cholesterol synthesis-related genes was upregulated. The expression of CYP8B1 protein was significantly down-regulated, and the ratio of cholic acid (CA) to chenodeoxycholic acid (CDCA) was significantly reduced in the liver of mice exposed to cigarette smoking especially for HFD group. Cigarette smoking exposure caused insulin resistance in the liver of mice with HFD. The composition of the gut microbiota was altered with the exposure of cigarette smoking, and the change of the distribution of primary bile acids might be one of the reasons. It was concluded that cigarette smoking would break the homeostasis of cholesterol and bile acids metabolism and changed the composition of gut microbiota. Our discoveries confirmed that smoking bans are important for the public health.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Fumar Cigarros/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Microbioma Gastrointestinal/fisiologia , Animais , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Exposição por Inalação/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poluição por Fumaça de Tabaco/efeitos adversos
6.
Bioorg Med Chem ; 55: 116598, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34979291

RESUMO

Liver injury mediated by endoplasmic reticulum (ER) stress can cause many kinds of liver diseases including hepatic glucose and lipid metabolic disorders, and long term liver injury would lead to cirrhosis and hepatic cancer. Therefore, effective drugs for treating liver injury are urgent in need. Berberine is a multifunctional drug of traditional Chinese medicine, and it can improve various liver diseases. To study the effects of berberine on ER stress-induced liver injury, tunicamycin was administrated to C57BL/6 mice with or without berberine pre-treatment. H&E staining was used to check the morphology and histology of liver tissues. The serum and liver tissues were harvested to test biochemical indexes and the expression levels of genes related with glucose and lipid metabolism, ER stress and unfold protein response (UPR). 16S rDNA sequence technology was conducted to check the fecal microbiota. Pre-administration with berberine could alleviate the excess accumulation of triglyceride (TG) in the liver of mice treated with tunicamycin. Tunicamycin administration caused significant increase of the expression level of genes related to ER stress and UPR, such as CHOP, Grp78 and ATF6, but the berberine pre-treatment could significantly downregulate the expression level of these genes. Tunicamycin administration resulted in increased ratio of Prevotellaceae to Erysipelotrichaceae at the family level of the fecal microbiota in mice, and this trend was reversed by the pre-treatment of berberine. These results demonstrated that berberine could improve liver injury induced hepatic metabolic disorders through relieving ER stress in hepatocytes and regulating gut microbiota in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...